
BUG: unable to handle kernel NULL pointer dereference at virtual address 0000009c
printing eip:

c01e41ee

*pde = 00000000
Oops: 0000 [#1]
SMP
Modules linked in:
CPU: 0
EIP: 0060:[<c01e41ee>] Not tainted VLI
EFLAGS: 00010202 (2.6.18-1-k7 #1)
EIP is at acpi_hw_low_level_read+0x7/0x6a
eax: 00000010 ebx: 00000001 ecx: 00000094 edx: c18e1f80
esi: c18e1f94 edi: 00000000 ebp: 00000000 esp: c18e1f68
ds: 007b es: 007b ss: 0068
Process swapper (pid: 1, ti=c18e0000 task=f7b44aa0 task.ti=c18e0000)
Stack: 00000001 c18e1f94 00000000 c01e42ae 00fb3c00 00000000 00000000 c02b670c

f7fb3c00 c02b6834 c01c21b5 c02b66dc c01c1e26 f7fb3c00 c0344b6c 00000000
c01c12d0 00000000 c01003e1 c0102b46 00000202 c01002d0 00000000 00000000

Call Trace:
[<c01e42ae>] acpi_hw_register_read+0x5d/0x177
[<c01c21b5>] quirk_via_abnormal_poweroff+0x11/0x36
[<c01c1e26>] pci_fixup_device+0x68/0x73
[<c01c12d0>] pci_init+0x11/0x28
[<c01003e1>] init+0x111/0x28e
[<c0102b46>] ret_from_fork+0x6/0x1c
[<c01002d0>] init+0x0/0x28e
[<c01002d0>] init+0x0/0x28e
[<c0101005>] kernel_thread_helper+0x5/0xb

Code: a0 82 2d c0 76 1b 50 68 85 8c 2a c0 68 f3 00 00 00 ff 35 ac ef 28
c0 e8 c7 80 00 00 31 d2 83 c4 10 89 d0 c3 57 85 c9 56 53 74 5d <8b>
71 08 8b 59 04 89 f7 09 df 74 51 c7 02 00 00 00 00 8a 09 84
EIP: [<c01e41ee>] acpi_hw_low_level_read+0x7/0x6a SS:ESP 0068:c18e1f68
<0>Kernel panic - not syncing: Attempted to kill init!

1



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Motivation

Motivation
• My last PLASMA talk: Case study on using BLAST in

order to find and avoid common programming errors

in Linux device drivers (Mühlberg and Lüttgen, 2006)

• Results:

– Substantial amount of time for manual modification

of the source code is required
– No support for pointer operations
– No support for concurrency

2



Simulation-based Verification of Memory Safety Properties for Object Code Programs
Jan Tobias Mühlberg

Simulation-based Verification of
Memory Safety Properties for Object

Code Programs
Jan Tobias Mühlberg

muehlber@cs.york.ac.uk

University of York, UK

PLASMA Seminar, York, 22nd February 2007

3

muehlber@cs.york.ac.uk


Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Why Object Code?

Simulation-based Verification of
Memory Safety Properties for Object

Code Programs

4



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Why Object Code?

Why Object Code?
• Programs are not always available in source code

(proprietary stuff, libraries)

• Do properties hold after compilation and

optimisation?

• Many bugs exist because of platform specific details

• Programs may be modified after compilation

• Unspecified language constructs, use of inline

assembly or multiple languages 5



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Simulation-based Verification of
Memory Safety Properties for Object

Code Programs

6



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety?
• Supported by some verification suites:

– NULL-pointer dereferences
– alternating calls of malloc() and free()

• Problem:

– What if a pointer does not equal NULL

but is invalid?
– What if we are operating on nested

data structures?
7



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)
"[...] we define a software entity to be

memory safe if (a) it never references

a memory location outside the the address

space allocated by or for that entity, and (b)

it never executes instructions outside the code

area created by the compiler and linker within

that address space." (Dhurjati et al., 2005)

8



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)
• What I am interested in:

– Dereferencing invalid pointers
– Uninitialised reads
– Buffer overflows
– Memory leaks
– Violation of API usage rules for (de)allocation

functions

9



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)

"You should never pass anything to kfree

that was not obtained from

kmalloc." (Corbet et al., 2005)

• Several APIs for allocation and

de-allocation

• General problems: Is a pointer valid

at any time it is de-referenced?

Is it valid for a specific operation?
10



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)

11



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)

12



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)

13



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Memory Safety?

Memory Safety? (cont’d)
• What I am interested in:

– Dereferencing invalid pointers
– Uninitialised reads
– Buffer overflows
– Memory leaks
– Violation of API usage rules for (de)allocation

functions

14



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Simulation-based Verification?

Simulation-based Verification of
Memory Safety Properties for Object

Code Programs

15



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Simulation-based Verification?

Simulation-based Verification?
• We have a complex software system and we

are interested in properties that can probably

not be verified directly

• However, we can test the system or simulate

its behaviour

16



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Simulation-based Verification?

Simulation-based Verification?
• Can we prove that our test bench or the set

of simulation runs covers all important

situations?

• Interesting approaches for using coverage metrics

in combination with constraint solving and model

checking (Chockler et al., 2001), (Chockler et al., 2003)

17



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Why Linux Device Drivers?

Why Linux Device Drivers?
• Highly critical domain

• Modular software architecture

• Small programs with high complexity

• Almost no tool support for debugging

and verification

• Plenty of case studies available to

compare results with

18



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

• Identify module dependencies
• Provide implementations for all symbols referenced

in the modules under consideration
• Generate functions that call the driver’s interface

functions with valid parameters
• Link a static binary

19



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

2. Analyse the resulting binary

• Identify code, data, entry points, basic blocks
• That is undecidable – we have to be conservative

20



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

2. Analyse the resulting binary

3. Generate IR and DFG

• Explicit load/store operations
• Static single assignment form
• Based upon Valgrind’s VEX library

21



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

2. Analyse the resulting binary

3. Generate IR and DFG

4. Program slicing

• We are not interested in most computations
• We are not interested in I/O operations
• Eliminates ∼ 60% of a driver’s instructions

22



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

2. Analyse the resulting binary

3. Generate IR and DFG

4. Program slicing

5. Generate and solve constraint system

• Use DFG after slicing as a dependency graph
• Not yet implemented!

23



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

2. Analyse the resulting binary

3. Generate IR and DFG

4. Program slicing

5. Generate and solve constraint system

6. Generate a set of initial memory states

• Currently: memory areas are filled with random

data 24



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
My Approach

My Approach
1. Generate a small runtime environment for the driver

2. Analyse the resulting binary

3. Generate IR and DFG

4. Program slicing

5. Generate and solve constraint system

6. Generate a set of initial memory states

7. Run the resulting programs
25



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Examples. . .

Examples. . .
• I would like to present something,

but that’s another talk...

26



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Future Work

Future Work
• Formalise data-flow analysis and slicing

techniques used; give more talks

• Implement proper generation of initial memory states

using constraint solving

• Add support for concurrent executions

of a driver’s code

• Employ the tool in a case study on file systems

(with Andy and Gerald) 27



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Future Work

Future Work
• Make the whole thing publicly available

• Use model checking to verify the exhaustiveness of

the simulation?

• Can we apply further abstraction and partitioning to

use model checking directly?

28



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Thank you!

Thank you!

29



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
References

References
Chockler, H., Kupferman, O., Kurshan, R., and Vardi, M.: 2001, A practical approach to coverage

in model checking, in Computer Aided Verification, Proc. 13th International Conference, Vol.
2102 of Lecture Notes in Computer Science, pp 66–78, Springer-Verlag

Chockler, H., Kupferman, O., and Vardi, M.: 2003, Coverage metrics for formal verification, in
12th Advanced Research Working Conference on Correct Hardware Design and Verification
Methods, Vol. 2860 of Lecture Notes in Computer Science, pp 111–125, Springer-Verlag

Corbet, J., Rubini, A., and Kroah-Hartmann, G.: 2005, Linux Device Drivers, O’Reilly, Se-
bastopol, CA, USA, 3rd edition

Dhurjati, D., Kowshik, S., Adve, V., and Lattner, C.: 2005, Trans. on Embedded Computing Sys.
4(1), 73

Mühlberg, J. T. and Lüttgen, G.: 2006, Blasting linux code, in FMICS 2006, No. 4346 in LNCS,
pp 211 – 226

30



Simulation-based Verification of Memory Safety Properties for Object Code Programs:
Random other things

Random other things
• Izura mailed: "Please send my warmest regards to

everybody." And she updated her publications list. . .

• Publications list: Izura, Gerald, Malcolm, Mike, Tobias

and Alan updated their lists recently. How about the

others?

• The term is over in three weeks. We need talks for

next term!

• Next talk. . . 31


