

FUN with Lego Mindstorms
Jan Tobias Milhlberg & Matthew Naylor THE UNIVERSITY 0£ 407k

FUN with Lego Mindstorms

Jan Tobias Muhlberg & Matthew Naylor

<muehlber |mfn>Qcs.york.ac.uk

University of York, UK

PLASMA Seminar, York, 01st March 2007

<muehlber|mfn>@cs.york.ac.uk

FUN with Lego Mindstorms:
Reactive Systems Design

Reactive Systems Design
e Gerald, Matthew and Tobias

e Contents:

— Fixed-Point Theory

— Lustre, Esterel, Statecharts
— Compilation and Verification
— Interesting bit: Practicals :-)

FUN with Lego Mindstorms:
RSD Practicals

RSD Practicals

e Several tutorials on using SCADE
e Constructing a Lego Bricksorter

e Programming in SCADE using data-flow
diagrams and Safe State Machines

e Design Verification

FUN with Lego Mindstorms:
SCADE

SCADE

e "The Standard for the Development of Safety-Critical

Embedded Software in the Avionics Industry”

e Programming in data-flow diagrams (graphical
Lustre) and Safe State Machines (Statecharts)

e Facilitate simulation and verification of safety
properties

e Code generation (C)

FUN with Lego Mindstorms:
SCADE to Lego

SCADE to Lego

e A simple example:

Itle - Example Tor scadeZbrick
Description: A Mindstorms robot with a light sensor, a
touch sensor and a motor.

Created by © Jan Tobias Muehlberg 20 Moy 2006 0.9
SoundBeep0ff — |
SoundBeepOn | ™,
I %
| ™, Beep
[} +
Sensorlight_1 |
hiators Off I—-l_,__hE ",
SenzorzLight Threshold —— . l_|—|:| ~
hdator_A Speed
—> =
SenzorTouch_2 — |
SensorsTouchTrue b—— hotorsReverse '—-."“——-{: },

Motors Forward 1 1 hotar_A_Direction

FUN with Lego Mindstorms:
The Task

The Task

FUN with Lego Mindstorms:
The Task

The Task

e Two phases:

— Initialisation: Move the pusher into a position in

which it does not block the belt.
— Normal operation: White bricks (threshold >= 40)

shall be pushed out, black bricks shall stay on the
conveyor belt. The RCX shall beep on detection of
a white brick.

FUN with Lego Mindstorms:
Additional Tasks

Additional Tasks

e Dealing with machines such as our Bricksorter re-

quires some health and safety measures to be put
in place. Modify your program so that all motors are
turned off as long as the Program button is pressed.

e The Bricksorter does not work very well for bricks
larger than 2x2. In fact it tends to be self-destructive.
Think about a way to deal with long bricks.

FUN with Lego Mindstorms:
Solution: Node Initialise

Node Initialise

™,
A

Beep

FBY

* PRE _FDT }

{‘ Init Done
1 —_—

falzse b——kH

R . Do S

ZenzorPush hdotorPuzshOn

10

FUN with Lego Mindstorms:
Solution: Node SortBricks

Node SortBricks

I ",
| P 1
SenzarPush S,
Push Out S
| ™, . hdatorPush On
I &
sensorlght
™,
-

Beep

FUN with Lego Mindstorms:
Solution: Node PushOut

Node PushOut

|d- PRE _J

—> —)
Push
—)) >
. &
hatorPushOn
I ™, I }G

SensorPush

12

FUN with Lego Mindstorms:
Solution: Node Bricksorter

Node Bricksorter

|
5o |
SoundBeepOn I—'_'."h——-qjix"w
SoundBeep 0ff —————] I
Sensors Light Threshold Beep
e,
I ™,
| 0 = — 1
Sen=orLight_1 N
hiotors Off {1 I P
1 hotor_B_Speed
.2
I . — |
[I Initialize hdators Forward I—RI“
SensorTouch 2 J_.\‘ﬂ + o
hdators On JEI | hdotor_B_Direction
hiotars Init
1 ——__ ™
I > / hoicit fﬁ Spead
; or_f_Spes
SensorTouch_3 sortBricks
hitors Rewerse I—}
hotor A Direction
I ™,
I LI
Buttan_Pgrm —
SensorsTouchTroe — |
ButtonReleazed

13

FUN with Lego Mindstorms:
We had a lot of fun.

We had a lot of fun.

14

FUN with Lego Mindstorms:
Design Verification

Design Verification

e Basic idea: Write an Observer In terms of a data
flow equation

e The Design Verifier will prove that its Proof
Objectives hold true for all possible executions

. Ore_Property
Input1
S
> — >
Ianrt1'>—l_ our hin_ Node %\\ qufiﬂhj eeeee _

-
Input3 Proof _Objective_2
FBY
e —
1
J Another_Property

falze —— 1 5

FUN with Lego Mindstorms:
Design Verification

Design Verification (1)

e HealthAndSafetyProperty: All motors are turned
off as long as the Program button is pressed

hiotor_A

hdotors Off — —

tue —T] &
hiotor_B HealthAnd Safety Property

) |

Button_Pgmmn

SenzorsTouchTrue —

16

FUN with Lego Mindstorms:
Design Verification

Design Verification (2)

e Embed the "Property Node" into an Observer Node

| SensorLight_1 % <
> X
5 e

Sensar Touch_2
1 — 1
f .

| kY Bricksorter —] Heatth#nd sat ™,
| rick=orter] S S i

Sensor Tauch_3 HealthAnd Safety Property
— ~

Button_Pgrmm

17

FUN with Lego Mindstorms:

Design Verification

Design Verification

e In this case everything is fine:

A g e

b e

i]

bricksorter.etp
E1-23 Proof Dbjectives
[Observer HealthindS afetyProperty
-[(] Division-by-Zera Checks
~[7 Owerflow Checks

~[_] Strategies

D Mapping Groups

Tasks

General Info

Cbserver.HealthAandSafet:

tirme of analysis

Wednesday 31 January 2007
17:25

rmodel bricksorter
user muehlber
Sum Up

Observer. HealthandSafetwProperty Y alid

Tasks

Observer.HealthAndSafetyProperty

MNode Cbhserver
Output HealthandSafetvProperty

Strategy Default - Prove
Mapping None
Group
< | & Result valid :
Filgtfiew ‘ @ Flameworkl B2 Design V... I- 1l | _,I 4| C | LI'
—’:l Task | Result | 4
|| .Observer.Healthﬁ\ndSaFetvProperty Walid

18

FUN with Lego Mindstorms:
Design Verification

Design Verification

e If the proof fails, the Design Verifier generates a sce-
nario which can be loaded into the SCADE Simulator

i) (N |EX} . . . L
zl= s
E‘- bricksorter. etp time of analysis wednesday 31 January 2007
=23 Proof Objectives Tasks 17:34
| L.@® Dbserver HealthAndS afetyPropert N
> IS I Al el e model bricksorter
-0 DivisiorvbyZero Checks Ohserver. HealthandSafet:
(22 Overflow Checks . usar muehlber
e[Shategies
i-[L] Mapping Groups Sum Up
Observer.HealthandSafetyProperty Falsifiable
Tasks P

Observer.HealthAndSafetyProperty

Mode Observer

Output HealthandSafetyProperty
Strategy Default - Prove

Mapping

Group None
Result Falsifiable
Scenario scenarios/Observer.HealthAndSafetyProperty s0.555 | [Load
Scenario]
1 | Translation 1
FiIeViewJ @Flamework] B2 Design ... I- ‘| | _,l ‘|" D.s | _,I- 1 9
Task | Result | 4

Ll

@ Observer HealthandSafetyProperty Falsifiable

FUN with Lego Mindstorms:
Issues with SCADE

Issues with SCADE

e Graphical languages are *urgs”

e Slow and difficult program development
e Generates slow programs

e Undocumented specialities (cycle 0)

e Tends to crash

e Matthew likes to do it in Haskell. ..

20

FUN with Lego Mindstorms:
Lava and Lego?

Lava

e Lava is a Haskell library for circuit design

e It provides two abstract data types: Bit and Word
e Here are some example operators of the ADTs:

(==>) :: Bit —-> Bit -> Bit
(+) :: Word —-> Word -> Word

(Note how Word is an instance of Haskell's Num class)

21

FUN with Lego Mindstorms:
Lava and Lego?

Lava 2

e Any Haskell function over tuples/lists of
Bits can be:
— simulated (of course!)

— verified for all inputs of a given size
(if it returns a Bit, I.e. Is a proposition)

— turned into a circuit! (e.g. for FPGA)

22

FUN with Lego Mindstorms:
Lava and Lego?

Example 1 - Simple Circuits

import Lava

—— An ordering relation on bits
a ‘leg' b = a ==> D

—— A nice operator for multiplexing

a ? (b, c) = 1fThenElse a (b, <)
bitSort :: (Bit, Bit) -> (Bit, Bit)
bitSort (a, b) = (a ‘leg"' b) ? ((a, b)), (b, a))

Lava> simulate bitSort (high, low)

(low, high)
propBitSort (a, b) = ¢ ‘leg' d
where
(c, d) = sort (a, b)

Lava> smv propBitSort
Valid.

23

FUN with Lego Mindstorms:
Lava and Lego?

Example 2 - Listy Circuits

—— A linear reduction array

linear :: ((a, a) —> a) -> [a] -> a
linear £ [a] = a
linear £ (a:as) = f (a, linear f as)

Lava> simulate (linear and?2) [high, 1ow, high]
low

—— Tree-shaped reduction: much better!

tree :: ((a, a) —> a) —> [a] —-> a
tree £ [a] = a

tree £ (a:b:bs) = tree £ (bs ++ [f (a, b)])
propAndTree = forAll (list 8) $ Aas —>

linear and2?2 as <==> tree and2 as

Lava> smv propAndIlree
Valid

—— NOTE: We can’t parameterise the property over "and2l2".
—— But, we could with SmallCheck!
—— SmallCheck properties are more expressive.

FUN with Lego Mindstorms:
Lava and Lego?

How does Lava work?

e It expands out recursion to give a graph-shaped

processing network, AKA a circuit.
— Nodes represent operators of the ADTs
— Edges represent data flow

e Can we express loops in the graph?

— Yes, using “circular programming”
I np

parity :: Bit -> Bit
parity inp out out
where
out’ delay low out
out xorZ2 (inp, out’)

25

FUN with Lego Mindstorms:
Lava and Lego?

Turning Circuits into C

1. Break loops in graph by extracting flipflops. Call the resulting
acyclic graph G.

2. Generate a C program as follows:

a. Initialise flipflops

b. Create an infinite while loop which
i. Reads inputs from sensors
ii. Executes a sequence of assignment statements

that satisfies the data dependencies of G
1i1. Writes outputs to actuators

iv. Performs flipflop updates

26

FUN with Lego Mindstorms:
Lava and Lego?

C Code for Parity Example

int main(void) {
int wl; ... ; int wlb5;
wl = 0; w2 = 0; w3 = 0;
wd = 0; wb =0; w6 =0; wll = 1; wl3 = 0; wli4
wlb = 1; wl2 = wl3;
ds_active (&SENSOR_1);
ds_active (&SENSOR_2); ds_active (&SENSOR_3);
while (1) {
wl = 0; w2 = 0; w3 = 0; w4 = 0,
O, wo = 0; wlO = TOUCH_1,;, wll = 1; w9 = (wlO==wll) &&1;
wl3 = 0; w8 = wo9l=wl2; wld4d = 0; wlb = 1; w/7 = w8?wld:wl5;

|
O
~e

motor_a_dir(wl); motor_b dir(w2); motor_c_dir (w3);
motor_a_speed(wd); motor_b_speed(wd); motor_c_speed(wb);

wl2 = w8;
b}

FUN with Lego Mindstorms:
Now for the Brick Sorter!

Now for the Brick Sorter!

e Problem:
— Lava is great for data parallelism...
— But horrible for control systems!

e Solution:
— Haskell is great for writing interpreters...
— Let’s define our own little language for control

systems in Lava
— Actually, Koen Claessen and Gordon Pace have

already done it for us : -)

28

FUN with Lego Mindstorms:
Flash Gordon to the Rescue!

Flash Gordon to the Rescue!

Start
data Flash out ¢
= Skip .
| Emit out — 2
| Wait :::é
| IfThenElse Bit (Flash out, Flash out)
| While Bit (Flash out) i
| Flash out :>> Flash out finish
| Flash out :|| Flash out
compile :: Eg out => Flash out -> [out] —> [Bit]
compile = ... about 50 lines of code :-)

29

FUN with Lego Mindstorms:

A tidier interface

A tidier interface

skip

emit a

wait

ifte b (p, 9)
while b p

p Il g
p >>> g

forever p
shout a
waitUntil a

Skip

Emit a

Wait

IfThenElse b (p, Q)
While b p

p ol g

p >> g

while high p
emit a >>> wait
while (inv a) wait

30

FUN with Lego Mindstorms:
Finally, our Brick Sorter

Finally, our Brick Sorter

data Emitters = Push | Belt
deriving Eg

sorter (touch, 1light) = initialise >>> (moveBelt ||| pushWhenLight)
where

initialise = while (inv touch) (shout Push)

moveBelt = forever (shout Belt)

pushWhenlLight = forever (waitUntil light
>>> while touch (shout Push)
>>> while (inv touch) (shout Push)
>>> wait)

31

FUN with Lego Mindstorms:

Rest of code — We have nothing to hide!

ReSt Of COde (We have nothing to hide!)

main
where
f inp

where

(push, belt)

interface (touch,
where
reflection
touching
[push, belt]

when sig speed

light)

writeLego "sorter" £

Output { dirMotorA = motorReverse
, dirMotorB = motorForward
, dirMotorC = motorNeutral

, speedMotorA = belt

, speedMotorB = push

, speedMotorC = motorStop
, beep = noBeep }

interface (touch2 inp, lightl 1inp)
(when push 100, when belt 80)

light />=/ lightThreshold

touch /=/ sensorTouched

compile (sorter (touching, reflection))
[Push, Belt]

sig ? (speed, motorStop)

32

FUN with Lego Mindstorms:
Lava and Lego?

Conclusions and Future work

e Mixing Lava with custom languages is nice. Many

useful languages can be nicely expressed in Lava,
e.g. a while ago | embedded a version of Occam in
Lava — like Flash, it was only about 50 lines of code,

and very useful!

e Could BlueSpec ideas be nicely embedded in Lava?

33

FUN with Lego Mindstorms:
Lava and Lego?

Conclusions and Future work 2

e Lava could do with subroutine support. Replication
In software isn’t very helpful!

e Sized vectors in Haskell’s type system would be use-
ful in Lava. With the current enthusiasm in GADTs
and type-level programming, maybe this will happen?

e Mary Sheeran and Koen Claessen are interested in
generating C from Lava for an ATl 64 processor GPU

34

FUN with Lego Mindstorms:
Thank you!

Thank you!

35

FUN with Lego Mindstorms:
References

References

Lattgen, G. and Muhlberg, J. T.: 2006, Reactive Systems Design Course Page, http://

www—course.cs.york.ac.uk/rsd/.
Muhlberg, J. T.: 2006, scade2brick — Prepare C code generated by SCADE for brickOS., http:

//zeus.fh-brandenburg.de/~muehlber/content/software/scade2brick/.

36

http://www-course.cs.york.ac.uk/rsd/
http://www-course.cs.york.ac.uk/rsd/
http://zeus.fh-brandenburg.de/~muehlber/content/software/scade2brick/
http://zeus.fh-brandenburg.de/~muehlber/content/software/scade2brick/

FUN with Lego Mindstorms:
Random other things

Random other things

e Publications list: Still no response from users with
UIDs 1041 and 1788. .. Please!

e [he term is over in two weeks. We need talks for next

term!

e Next talk. ..

37

