
1

FUN with Lego Mindstorms
Jan Tobias Mühlberg & Matthew Naylor

FUN with Lego Mindstorms
Jan Tobias Mühlberg & Matthew Naylor
<muehlber|mfn>@cs.york.ac.uk

University of York, UK

PLASMA Seminar, York, 01st March 2007

2

<muehlber|mfn>@cs.york.ac.uk

FUN with Lego Mindstorms:
Reactive Systems Design

Reactive Systems Design
• Gerald, Matthew and Tobias

• Contents:

– Fixed-Point Theory
– Lustre, Esterel, Statecharts
– Compilation and Verification
– Interesting bit: Practicals :-)

3

FUN with Lego Mindstorms:
RSD Practicals

RSD Practicals
• Several tutorials on using SCADE

• Constructing a Lego Bricksorter

• Programming in SCADE using data-flow

diagrams and Safe State Machines

• Design Verification

4

FUN with Lego Mindstorms:
SCADE

SCADE
• "The Standard for the Development of Safety-Critical

Embedded Software in the Avionics Industry"

• Programming in data-flow diagrams (graphical

Lustre) and Safe State Machines (Statecharts)

• Facilitate simulation and verification of safety

properties

• Code generation (C)

5

FUN with Lego Mindstorms:
SCADE to Lego

SCADE to Lego
• A simple example:

6

FUN with Lego Mindstorms:
The Task

The Task

7

FUN with Lego Mindstorms:
The Task

The Task
• Two phases:

– Initialisation: Move the pusher into a position in

which it does not block the belt.
– Normal operation: White bricks (threshold >= 40)

shall be pushed out, black bricks shall stay on the

conveyor belt. The RCX shall beep on detection of

a white brick.

8

FUN with Lego Mindstorms:
Additional Tasks

Additional Tasks
• Dealing with machines such as our Bricksorter re-

quires some health and safety measures to be put

in place. Modify your program so that all motors are

turned off as long as the Program button is pressed.

• The Bricksorter does not work very well for bricks

larger than 2x2. In fact it tends to be self-destructive.

Think about a way to deal with long bricks.

9

FUN with Lego Mindstorms:
Solution: Node Initialise

Node Initialise

10

FUN with Lego Mindstorms:
Solution: Node SortBricks

Node SortBricks

11

FUN with Lego Mindstorms:
Solution: Node PushOut

Node PushOut

12

FUN with Lego Mindstorms:
Solution: Node Bricksorter

Node Bricksorter

13

FUN with Lego Mindstorms:
We had a lot of fun.

We had a lot of fun.

14

FUN with Lego Mindstorms:
Design Verification

Design Verification
• Basic idea: Write an Observer in terms of a data

flow equation

• The Design Verifier will prove that its Proof

Objectives hold true for all possible executions

15

FUN with Lego Mindstorms:
Design Verification

Design Verification (1)
• HealthAndSafetyProperty: All motors are turned

off as long as the Program button is pressed

16

FUN with Lego Mindstorms:
Design Verification

Design Verification (2)
• Embed the "Property Node" into an Observer Node

17

FUN with Lego Mindstorms:
Design Verification

Design Verification (3)
• In this case everything is fine:

18

FUN with Lego Mindstorms:
Design Verification

Design Verification (4)
• If the proof fails, the Design Verifier generates a sce-

nario which can be loaded into the SCADE Simulator

19

FUN with Lego Mindstorms:
Issues with SCADE

Issues with SCADE
• Graphical languages are *urgs*

• Slow and difficult program development

• Generates slow programs

• Undocumented specialities (cycle 0)

• Tends to crash

• Matthew likes to do it in Haskell. . .

20

FUN with Lego Mindstorms:
Lava and Lego?

Lava
• Lava is a Haskell library for circuit design

• It provides two abstract data types: Bit and Word

• Here are some example operators of the ADTs:

(==>) :: Bit -> Bit -> Bit

(+) :: Word -> Word -> Word

(Note how Word is an instance of Haskell’s Num class)

21

FUN with Lego Mindstorms:
Lava and Lego?

Lava 2
• Any Haskell function over tuples/lists of

Bits can be:

– simulated (of course!)

– verified for all inputs of a given size

(if it returns a Bit, i.e. is a proposition)

– turned into a circuit! (e.g. for FPGA)

22

FUN with Lego Mindstorms:
Lava and Lego?

Example 1 - Simple Circuits
import Lava

-- An ordering relation on bits
a ‘leq‘ b = a ==> b

-- A nice operator for multiplexing
a ? (b, c) = ifThenElse a (b, c)

bitSort :: (Bit, Bit) -> (Bit, Bit)
bitSort (a, b) = (a ‘leq‘ b) ? ((a, b), (b, a))

Lava> simulate bitSort (high, low)
(low,high)

propBitSort (a, b) = c ‘leq‘ d
where
(c, d) = sort (a, b)

Lava> smv propBitSort
Valid.

23

FUN with Lego Mindstorms:
Lava and Lego?

Example 2 - Listy Circuits
-- A linear reduction array
linear :: ((a, a) -> a) -> [a] -> a
linear f [a] = a
linear f (a:as) = f (a, linear f as)

Lava> simulate (linear and2) [high, low, high]
low

-- Tree-shaped reduction: much better!
tree :: ((a, a) -> a) -> [a] -> a
tree f [a] = a
tree f (a:b:bs) = tree f (bs ++ [f (a, b)])

propAndTree = forAll (list 8) $ λas ->
linear and2 as <==> tree and2 as

Lava> smv propAndTree
Valid

-- NOTE: We can’t parameterise the property over "and2".
-- But, we could with SmallCheck!
-- SmallCheck properties are more expressive. 24

FUN with Lego Mindstorms:
Lava and Lego?

How does Lava work?
• It expands out recursion to give a graph-shaped

processing network, AKA a circuit.
– Nodes represent operators of the ADTs
– Edges represent data flow

• Can we express loops in the graph?
– Yes, using “circular programming”

parity :: Bit -> Bit
parity inp = out

where
out’ = delay low out
out = xor2 (inp, out’)

out

inp

25

FUN with Lego Mindstorms:
Lava and Lego?

Turning Circuits into C
1. Break loops in graph by extracting flipflops. Call the resulting
acyclic graph G.

2. Generate a C program as follows:

a. Initialise flipflops

b. Create an infinite while loop which

i. Reads inputs from sensors

ii. Executes a sequence of assignment statements
that satisfies the data dependencies of G

iii. Writes outputs to actuators

iv. Performs flipflop updates

26

FUN with Lego Mindstorms:
Lava and Lego?

C Code for Parity Example
int main(void) {
int w1; ... ; int w15;
w1 = 0; w2 = 0; w3 = 0;
w4 = 0; w5 = 0; w6 = 0; w11 = 1; w13 = 0; w14 = 0;
w15 = 1; w12 = w13;
ds_active(&SENSOR_1);
ds_active(&SENSOR_2); ds_active(&SENSOR_3);
while (1) {
w1 = 0; w2 = 0; w3 = 0; w4 = 0;
w5 = 0; w6 = 0; w10 = TOUCH_1; w11 = 1; w9 = (w10==w11)&&1;
w13 = 0; w8 = w9!=w12; w14 = 0; w15 = 1; w7 = w8?w14:w15;

motor_a_dir(w1); motor_b_dir(w2); motor_c_dir(w3);
motor_a_speed(w4); motor_b_speed(w5); motor_c_speed(w6);

w12 = w8;
}}

27

FUN with Lego Mindstorms:
Now for the Brick Sorter!

Now for the Brick Sorter!
• Problem:

– Lava is great for data parallelism...
– But horrible for control systems!

• Solution:
– Haskell is great for writing interpreters...
– Let’s define our own little language for control

systems in Lava
– Actually, Koen Claessen and Gordon Pace have

already done it for us :-) 28

FUN with Lego Mindstorms:
Flash Gordon to the Rescue!

Flash Gordon to the Rescue!

data Flash out
= Skip
| Emit out
| Wait
| IfThenElse Bit (Flash out, Flash out)
| While Bit (Flash out)
| Flash out :>> Flash out
| Flash out :|| Flash out

compile :: Eq out => Flash out -> [out] -> [Bit]
compile = ... about 50 lines of code :-) ...

start

finish

em
its

29

FUN with Lego Mindstorms:
A tidier interface

A tidier interface

skip = Skip
emit a = Emit a
wait = Wait
ifte b (p, q) = IfThenElse b (p, q)
while b p = While b p
p ||| q = p :|| q
p >>> q = p :>> q

forever p = while high p
shout a = emit a >>> wait
waitUntil a = while (inv a) wait

30

FUN with Lego Mindstorms:
Finally, our Brick Sorter

Finally, our Brick Sorter
data Emitters = Push | Belt

deriving Eq

sorter (touch, light) = initialise >>> (moveBelt ||| pushWhenLight)
where
initialise = while (inv touch) (shout Push)
moveBelt = forever (shout Belt)
pushWhenLight = forever (waitUntil light

>>> while touch (shout Push)
>>> while (inv touch) (shout Push)
>>> wait)

31

FUN with Lego Mindstorms:
Rest of code – We have nothing to hide!

Rest of code (We have nothing to hide!)

main = writeLego "sorter" f
where
f inp = Output { dirMotorA = motorReverse

, dirMotorB = motorForward
, dirMotorC = motorNeutral
, speedMotorA = belt
, speedMotorB = push
, speedMotorC = motorStop
, beep = noBeep }

where
(push, belt) = interface (touch2 inp, light1 inp)

interface (touch, light) = (when push 100, when belt 80)
where
reflection = light />=/ lightThreshold
touching = touch /=/ sensorTouched
[push, belt] = compile (sorter (touching, reflection))

[Push, Belt]
when sig speed = sig ? (speed, motorStop)

32

FUN with Lego Mindstorms:
Lava and Lego?

Conclusions and Future work
• Mixing Lava with custom languages is nice. Many

useful languages can be nicely expressed in Lava,

e.g. a while ago I embedded a version of Occam in

Lava – like Flash, it was only about 50 lines of code,

and very useful!

• Could BlueSpec ideas be nicely embedded in Lava?

33

FUN with Lego Mindstorms:
Lava and Lego?

Conclusions and Future work 2
• Lava could do with subroutine support. Replication

in software isn’t very helpful!

• Sized vectors in Haskell’s type system would be use-

ful in Lava. With the current enthusiasm in GADTs

and type-level programming, maybe this will happen?

• Mary Sheeran and Koen Claessen are interested in

generating C from Lava for an ATI 64 processor GPU

34

FUN with Lego Mindstorms:
Thank you!

Thank you!

35

FUN with Lego Mindstorms:
References

References
Lüttgen, G. and Mühlberg, J. T.: 2006, Reactive Systems Design Course Page, http://

www-course.cs.york.ac.uk/rsd/.
Mühlberg, J. T.: 2006, scade2brick – Prepare C code generated by SCADE for brickOS., http:

//zeus.fh-brandenburg.de/~muehlber/content/software/scade2brick/.

36

http://www-course.cs.york.ac.uk/rsd/
http://www-course.cs.york.ac.uk/rsd/
http://zeus.fh-brandenburg.de/~muehlber/content/software/scade2brick/
http://zeus.fh-brandenburg.de/~muehlber/content/software/scade2brick/

FUN with Lego Mindstorms:
Random other things

Random other things
• Publications list: Still no response from users with

UIDs 1041 and 1788. . . Please!

• The term is over in two weeks. We need talks for next

term!

• Next talk. . .

37

