BUG: unable to handle kernel NULL pointer dereference at virtual address 0000009c

printing eip:
cOledlee

*pde = 00000000
Oops: 0000 [#1]

SMP

Modules linked in:

CPU: 0

EIP: 0060: [<c0ledlee>] Not tainted VLI
EFLAGS: 00010202 (2.6.18-1-k7 #1)

EIP is at acpi_hw_low_level_read+0x7/0x6a

eax: 00000010 ebx: 00000001 ecx: 00000094 edx: cl8elf80
esi: cl8elf94 edi: 00000000 ebp: 00000000 esp: cl8elf68

ds: 007b es: 007b ss: 0068

Process swapper (pid: 1, ti=cl8e0000 task=f7b44aal0 task.ti=cl8e0000)

Stack: 00000001 cl18elf94 00000000 cOled42ae 00fb3c00 00000000 00000000 cO02b670c
£f7fb3c00 c02b6834 c01lc21b5 c02b66dc cO0lcle26 £7fb3c00 c0344b6c 00000000
c01lcl2d0 00000000 c01003el c0102b46 00000202 c01002d0 00000000 00000000

Call Trace:

[<cO0led42ae>] acpi_hw_register_ read+0x5d/0x177

]
[<c01lc21b5>] quirk_via_abnormal_poweroff+0x11/0x36
[<cO0lcle26>] pci_fixup_device+0x68/0x73
[<c01c12d0>] pci_init+0x11/0x28
[<c01003el>] init+0x111/0x28e
[<c0102b46>] ret_from_ fork+0x6/0xlc
[<c01002d0>] init+0x0/0x28e
[<c01002d0>] init+0x0/0x28e

[<c0101005>] kernel_thread_helper+0x5/0xb
Code: a0 82 2d c0 76 1b 50 68 85 8c 2a c0 68 £3 00 00 00
cO0 e8 ¢c7 80 00 00 31 d2 83 c4 10 89 dO c3 57 85 c¢9 56 53
71 08 8b 59 04 89 £7 09 df 74 51 c7 02 00 00 00 00 8a 09
EIP: [<cOledlee>] acpi_hw_low_level_ read+0x7/0x6a SS:ESP
<0>Kernel panic - not syncing: Attempted to kill init!

ff 35 ac ef 28
74 5d <8b>

84
0068:cl8elfo68

Slicing Object Code
Jan Tobias Mihlberg THE UNIVERSITYW

Slicing Object Code

. and finding memory safety violations.

Jan Tobias Muhlberg

muehlber@cs.york.ac.uk

University of York, UK

Theory Seminars, Birmingham, 28th February 2008

muehlber@cs.york.ac.uk

Slicing Object Code:
Motivation

Motivation
o 'BLAS T/ng Linux Code" (Miihlberg and Liittgen, 2006)

e "Model-checking Part of a Linux File System"

(Galloway et al., 2007)

e Results:
— The biggest problem is to abstract a faithful model
from a given program to be analysed.

Slicing Object Code:
Related Work

Related Work

e O’Hearn and colleagues: Spacelnvader, Smallfoot

(Yang et al., 2007)

e Microsoft Research: SLAM, VCC, Hypervisor

(Ball et al., 2006)

o "EXE: automatically generating inputs of death”

(Cadar et al., 2006)

Slicing Object Code:
Memory Safety?

Memory Safety?

e What | am interested in:

— Dereferencing invalid pointers

— Uninitialised reads

— Buffer overflows

— Memory leaks

— Violation of API usage rules for (de)allocation

e Not now: Shape safety
e But: Exhaustive and push-button

Slicing Object Code:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

Slicing Object Code:
Why Object Code?

Why ObJeCt COde? (Balakrishnan et al., 2005)

e Programs are not always available in source code

(proprietary stuff, libraries)

e Do properties hold after compilation and
optimisation?

e Many bugs exist because of platform specific details
e Programs may be modified after compilation

e Unspecified language constructs, use of inline
assembly or multiple languages 7

Slicing Object Code:
Project Outline

Project Outline
e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

Slicing Object Code:
Why Linux Device Drivers?

Why Linux Device Drivers?
e Highly critical domain
e Modular software architecture
e Small programs with high complexity

e Almost no tool support for debugging
and verification

e Plenty of case studies available to
compare results with

Slicing Object Code:
Project Outline

Project Outline
e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

10

Slicing Object Code:
Intermediate Representation

Intermediate Representation

e |IA32 assembly:
— =~ 500 instructions, 3 byte opcodes

— lots of instructions with multiple effects
(l.e. POP, PUSH, CALL)

— But still; clear semantics

11

Slicing Object Code:
Intermediate Representation

Intermediate Representation

e Valgrind’s IR (etnercote and Fitzhardinge, 200
— RISC-like assembly language with arbitrary
number of temporary registers
— 12 expressions, ~ 130 operations
— No side-effects
— Explicit load/store operations

— Static single assignment form

12

Slicing Object Code:
Intermediate Representation

Intermediate Representation

push sebp t0 = GET:I32(20)
t34 = GET:I32(16)
t33 = Sub32(t34,0x4:132)
PUT (16) = t33
STle(t33) = tO

mov sesp, sebp PUT (60) = 0x8048375:I32
t35 = GET:I32(16)
PUT (20) = t35

sub $0x8, $esp PUT (60) = 0x8048377:1I32

td = GET:I1I32(106)

t2 = Sub32(t4,0x8:I32)
PUT (32) = 0x6:I32

PUT (36) = t4

PUT (40) = 0x8:I32

PUT (1l6) = t2

13

Slicing Object Code:
Intermediate Representation

Intermediate Representation

e Defining a semantics:

Types = (I8]116|132)
t = 116 — (type : Types,val : Values)
r = 116 — I8
h = Addresses — Values
[= Addresses — (alloc : Bool, init . Bool,

start : 132, size : 132)

e command-state pair: {c, (t,7, h,1))
(with ¢ being a command, ¢ the set of temporary registers, r the

set of CPU registers, h the current heap and [the "Locations

] 14
function”)

Slicing Object Code:
Intermediate Representation

Intermediate Representation

e Defining a semantics:

(PUT(reqg) = treqg, (t,r, h,1))

(¢, [r|reg : val], h,1) if t(treg).type = I8
~ ¢ (t, [r|reg..reg + 1 :val],h,l) if t(treg).type = 116
(¢, [r|reg..reg + 3 : val], h,l) if t(treg).type = 132

(treg = GET : type(req), (t,r, h,1))

([tItreg : (type,r(reg))],r, h,1) if type = I8
~ ¢ ([t|treg : (type,r(reg..reg + 1))],r,h,l) if type =116
 ([t|treg : (type,r(reg..reg + 3))],r, h,1) if type = I32

15

Slicing Object Code:
Intermediate Representation

Intermediate Representation

e And translate the program into a set of
b|t'VeCt0r COﬂStraIntS fOF Y|CeS (Dutertre and de Moura, 2006):

(define t34.0x8048374.1:: (bitvector 32) (bv—-concat
(bv—concat rl19.0x00000001.0.0 r18.0x00000001.0.0)

(bv—concat rl7.0x00000001.0.0 rl1l6.0x00000001.0.0)))
(define t33.0x08048374.1:: (bitvector 32)

(bv-sub t34.0x08048374.1 (mk-bv 32 4)))

16

Slicing Object Code:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:

17

Slicing Object Code:
Symbolic Execution

Symbolic Execution

e Construct constraint system for each possible path
of the program (bounded loop unrolling)

e Registers and heap/stack are allowed to hold any
possible value initially

e Add (assert ...) forall pointer operations

® (check)

18

Slicing Object Code:
Symbolic Execution

Symbolic Execution

(define t36.0x08048358.1:: (bitvector 32) (bv—-concat
(bv—concat (heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 3)))
(heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 2))))
(bv—concat (heap.00000010 (bv—add t34.0x08048358.1 (mk-bv 32 1)))
(heap.00000010 t34.0x08048358.1))))
(define r0.0x08048358.5.1:: (bitvector 8)
(bv—-extract 7 0 t36.0x08048358.1))
(define r1.0x08048358.5.1:: (bitvector 8)
(bv—-extract 15 8 t36.0x08048358.1))
(define r2.0x08048358.5.1:: (bitvector 8)
(bv—extract 23 16 t36.0x08048358.1))
(define r3.0x08048358.5.1:: (bitvector 8)
(bv—-extract 31 24 t36.0x08048358.1))
(define t19.0x0804835b.1:: (bitvector 32) (bv-concat
(bv—-concat r3.0x08048358.5.1 r2.0x08048358.5.1)
(bv—-concat rl1.0x08048358.5.1 r0.0x08048358.5.1)))
;; checking t£t19.0x0804835b.1 (r)
(assert (= t19.0x0804835b.1 0b000O0OOO0OOOOOOOO0O0O0OOOOO0O0O000O0O0O0000))
(check)

19

Slicing Object Code:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution
— Of course it doesn’t work. ..

20

Slicing Object Code:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

21

Slicing Object Code:
Slicing Object Code

Slicing Object Code

o Program SI|C|ng (Weiser, 1981), (Ottenstein and
Ottenstein, 1984), (Horwitz et al., 1990)

e Decomposing programs based
on control and data flow

e Basically, constructing a system
dependence graph and search-
iIng for nodes the slicing criterion
depends on

22

Slicing Object Code:
Slicing Object Code

Slicing Object Code

push sebp t0 = GET:I32(20)
t34 = GET:I32(16) <-—
t33 = Sub32(t34,0x4:132) <-
PUT (16) = t33 <—

STle (t33) = tO0

mov sesp, sebp PUT (60) = 0x8048375:132
t35 = GET:I32(106)
PUT (20) = t35
sub $0x8, $esp PUT (60) = 0x8048377:1I32
t4d = GET:I32(106) <—
t2 = Sub32(t4,0x8:I32)
PUT (32) = 0x6:I32
PUT (36) = t4 <— criterion
PUT (40) = 0x8:I32
PUT (16) = t2

23

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e Now, how do we deal with LD/ST instructions?

tod = LDle:I32(t62)

STle(toed) = to63
STle(t34) = tl

tl7 = LDle:I32(tl8)

STle(tl7)

I
t
|_\
N

(assert (= tl1l7 0b00000O0O0OOOOOOOOOOOOO0OOOOO0OO0O0OO000)Y)
(check)

24

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e If all pointers evaluate to exactly one value, it's easy

e However, often they don’'t and we might end up with
"symbolic" pointers that may hold any value between
lo < pointer < up

e Solution: Heap dependency tree

25

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e Solution: Heap dependency tree

[1, 5%
[1‘3] [700]\
tl2, t13 (4,90] [91'5‘00]
[4.4] [5,90] t64, t19, ...

]

t34 t64

26

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e All satisfying values have to be computed for all

pointers — expensive

e We have to store the dependency tree — expensive
as well (but probably okay for device drivers)

e We get very precise slices!

27

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e Is it any good?

— Slices are usually < 200 constraints long and are

solved less than a second
— We can analyse a whole driver within an hour and

using about 1 GByte of RAM (crypto drivers — quite
simple, depth 2000)
— Works fine for finding possible NULL-dereferences

and access to memory that is not allocated
— Many more experiments to do...

28

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e Some pointers to literature:
— "Recovery of Jump Table Case Statements from

Binary Code" (ciuentes and Emmerik, 1999)
— "Interprocedural Static Slicing of Binary Executa-
bles" (Kiss et al., 2003)
— "Analyzing Memory Accesses in x86 Executables”
(Balakrishnan and Reps, 2004) and "Recovery of Variables and

Heap S’[FUC’[UFG |n X86 EXGCUtab|eS" (Balakrishnan and Reps,

29
2005)

Slicing Object Code:
Slicing Object Code

Slicing Object Code

e Some pointers to literature:

— "Generisches Slicing auf Maschinencode"” (schicking,

2005)

30

Slicing Object Code:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

31

Slicing Object Code:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

e If a property is violated, generate a test case that will
make the program crash — quickly

32

Slicing Object Code:
Test Case Execution

Test Case Execution

e Device drivers contain lots of hardware dependent

operations — we can'’t just run them in user space

e ...but we can construct a new binary program by
compiling all statements from (a union of) slices back

to object code

— Executes quickly without waiting for hardware
interaction or similar things. But that’s another talk. . .

33

Slicing Object Code:
Project Outline/Summary

Summary
e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

e If a property Is violated, generate a test case that will
make the program crash — quickly

34

Slicing Object Code:
Future Work

Future Work

e Try more properties (i.e. bounds checking, etc.)
e Experimental evaluation

e Compute the test cases

e Soundness and Completeness?

e Just ask me how many bugs I've found so far. ..

35

Slicing Object Code:
Thank you!

Thank you! Questions?

Slicing Object Code:
References

References

Balakrishnan, G. and Reps, T.: 2004, Analyzing memory accesses in x86 executables, in Proc.
Int. Conf. on Compiler Construction, Vol. 2985 of LNCS, pp 5 — 23

Balakrishnan, G. and Reps, T.: 2005, Recovery of Variables and Heap Structure in x86 Executa-
bles, Technical report, University of Wisconsin, Madison

Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T.: 2005, WYSINWYX: What You See Is
Not What You eXecute, in VSTTE

Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B., Raja-
mani, S. K., and Ustuner, A.: 2006, Thorough static analysis of device drivers, in EuroSys

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R.: 2006, Exe: automati-
cally generating inputs of death, in CCS '06: Proceedings of the 13th ACM conference on
Computer and communications security, pp 322—-335, ACM, New York, NY, USA

Cifuentes, C. and Emmerik, M. V.: 1999, Recovery of jump table case statements from binary
code, in IWPC '99: Proceedings of the 7th International Workshop on Program Comprehen-
sion, p. 192, IEEE Computer Society, Washington, DC, USA

Dutertre, B. and de Moura, L.: 2006, A fast linear-arithmetic solver for DPLL(T), in CAV 2006,
No. 4144 in LNCS, pp 81 — 94

Galloway, A., Muhlberg, J. T., Siminiceanu, R., and Luttgen, G.: 2007, Model-checking Part of
a Linux File System, Technical Report YCS-2007-423, Department of Computer Science,
University of York, UK

Horwitz, S., Reps, T., and Binkley, D.: 1990, ACM Trans. Program. Lang. Syst. 12(1), 26

37

Kiss, A., Jasz, J., Lehotai, G., and Gyimothy, T.: 2003, scam 00, 118

Muhlberg, J. T. and Littgen, G.: 2006, Blasting linux code, in FMICS 2006, No. 4346 in LNCS,
pp 211 — 226

Nethercote, N. and Fitzhardinge, J.: 2004, Bounds-checking entire programs without recompil-
ing, in Informal Proceedings of the Second Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE 2004)

Ottenstein, K. J. and Ottenstein, L. M.: 1984, The program dependence graph in a software
development environment, in SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software development environments, pp 177—
184, ACM, New York, NY, USA

Schlickling, M.: 2005, Generisches slicing auf maschinencode, Master’s thesis

Weiser, M.: 1981, Program slicing, in ICSE '81: Proceedings of the 5th international conference
on Software engineering, pp 439 — 449, IEEE Press, Piscataway, NJ, USA

Yang, H., Lee, O., Calcagno, C., Distefano, D., and O’Hearn, P.: 2007, On Scalable Shape
Analysis, Technical Report RR-07-10, Queen Mary, University of London

