BUG: unable to handle kernel NULL pointer dereference at virtual address 0000009c

printing eip:
cOledlee

*pde = 00000000
Oops: 0000 [#1]

SMP

Modules linked in:

CPU: 0

EIP: 0060: [<c0ledlee>] Not tainted VLI
EFLAGS: 00010202 (2.6.18-1-k7 #1)

EIP is at acpi_hw_low_level_read+0x7/0x6a

eax: 00000010 ebx: 00000001 ecx: 00000094 edx: cl8elf80
esi: cl8elf94 edi: 00000000 ebp: 00000000 esp: cl8elf68

ds: 007b es: 007b ss: 0068

Process swapper (pid: 1, ti=cl8e0000 task=f7b44aal0 task.ti=cl8e0000)

Stack: 00000001 cl18elf94 00000000 cOled42ae 00fb3c00 00000000 00000000 cO02b670c
£f7fb3c00 c02b6834 c01lc21b5 c02b66dc cO0lcle26 £7fb3c00 c0344b6c 00000000
c01lcl2d0 00000000 c01003el c0102b46 00000202 c01002d0 00000000 00000000

Call Trace:

[<cO0led42ae>] acpi_hw_register_ read+0x5d/0x177

]
[<c01lc21b5>] quirk_via_abnormal_poweroff+0x11/0x36
[<cO0lcle26>] pci_fixup_device+0x68/0x73
[<c01c12d0>] pci_init+0x11/0x28
[<c01003el>] init+0x111/0x28e
[<c0102b46>] ret_from_ fork+0x6/0xlc
[<c01002d0>] init+0x0/0x28e
[<c01002d0>] init+0x0/0x28e

[<c0101005>] kernel_thread_helper+0x5/0xb
Code: a0 82 2d c0 76 1b 50 68 85 8c 2a c0 68 £3 00 00 00
cO0 e8 ¢c7 80 00 00 31 d2 83 c4 10 89 dO c3 57 85 c¢9 56 53
71 08 8b 59 04 89 £7 09 df 74 51 c7 02 00 00 00 00 8a 09
EIP: [<cOledlee>] acpi_hw_low_level_ read+0x7/0x6a SS:ESP
<0>Kernel panic - not syncing: Attempted to kill init!

ff 35 ac ef 28
74 5d <8b>

84
0068:cl8elfo68
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Motivation

Motivation
o 'BLAS T/ng Linux Code" (Miihlberg and Liittgen, 2006)

e "Model-checking Part of a Linux File System"

(Galloway et al., 2007)

e Results:
— Memory safety issues are outside of the scope of

currently available software model checkers
— Biggest problem is to abstract a faithful model from

a given program
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Related Work

e O’Hearn and colleagues: Spacelnvader, Smallfoot

(Yang et al., 2007)

e Microsoft Research: SLAM, VCC, Hypervisor

(Ball et al., 2006)

o "EXE: automatically generating inputs of death”

(Cadar et al., 2006)

e "Analyzing stripped device-driver executables”

(Balakrishnan and Reps, 2008)
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Memory Safety?

e What | am interested in:

— Dereferencing invalid pointers

— Uninitialised reads

— Buffer overflows

— Memory leaks

— Violation of API usage rules for (de)allocation

e Not now: Shape safety
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Project Outline

e Why don’t we verify on the compiled code?
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Why ObJeCt COde? (Balakrishnan et al., 2005)

e Programs are not always available in source code

(proprietary stuff, libraries)

e Do properties hold after compilation and
optimisation?

e Many bugs exist because of platform specific details
e Programs may be modified after compilation

e Unspecified language constructs, use of inline
assembly or multiple languages 7
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Project Outline
e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers
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Why Linux Device Drivers?
e Highly critical domain
e Modular software architecture
e Small programs with high complexity

e Almost no tool support for debugging
and verification

e Plenty of case studies available to
compare results with
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Project Outline
e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

10
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Intermediate Representation

e |IA32 assembly:
— =~ 500 instructions, 3 byte opcodes

— lots of instructions with multiple effects
(l.e. POP, PUSH, CALL)

— But still; clear semantics

11



Is Your Program Memory Safe?:
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Intermediate Representation

e Valgrind’s IR (etnercote and Fitzhardinge, 200
— RISC-like assembly language with arbitrary
number of temporary registers
— 12 expressions, ~ 130 operations
— No side-effects
— Explicit load/store operations

— Static single assignment form

12
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Intermediate Representation

push sebp t0 = GET:I32(20)
t34 = GET:I32(16)
t33 = Sub32(t34,0x4:132)
PUT (16) = t33
STle(t33) = tO

mov sesp, sebp PUT (60) = 0x8048375:I32
t35 = GET:I32(16)
PUT (20) = t35

sub $0x8, $esp PUT (60) = 0x8048377:1I32

td = GET:I1I32(106)

t2 = Sub32(t4,0x8:I32)
PUT (32) = 0x6:I32

PUT (36) = t4

PUT (40) = 0x8:I32

PUT (1l6) = t2

13
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Intermediate Representation

e Defining a semantics:

Types = {18,116,132}
Addresses = bvecso
Values = bvecg U bvecig U bveczo
Registers = Integer — bvecg
TempRegisters =  Integer — (type € Types,val € Values U {L})
Heap = Addresses — bvecsg
HeapLocations = Addresses — (alloc : Bool,init : Bool

start € Addresses, size € bveczo)

e command-state pair: (c, (t,r, h,l))
14



Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

e Defining a semantics:
t(treg).val = L
(PUT(reg) = treg, (t,r, h,l))
(¢, [r|reg : t(treg).vall, h,1) if t(treg).type = I8
~ 9 (t, [r|{reg..reg + 1) : t(treg).val], h,l) if t(treg).type =116
(L, [r|(reg..reg + 3) : t(treg).val], h,l) if t(treg).type = 132

t(treg).type = type A t(treg).val = L

(treg = GET : type(reg), (¢t,r, h,l))
(([t|treg.val : r(reg)],r, h,1) if type = I8
~ ¢ ([t|treg.val : r({reg..reg + 1))],r, h,1) if type =116
| ([t|treg.val : r((reg..reg + 3))],7, h,l) if type =132

15
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Intermediate Representation

e And translate the program into a set of
b|t'VeCt0r COﬂStraIntS fOF Y|CeS (Dutertre and de Moura, 2006):

(define t34.0x8048374.1:: (bitvector 32) (bv—-concat
(bv—concat rl19.0x00000001.0.0 r18.0x00000001.0.0)

(bv—concat rl7.0x00000001.0.0 rl1l6.0x00000001.0.0)))
(define t33.0x08048374.1:: (bitvector 32)

(bv-sub t34.0x08048374.1 (mk-bv 32 4)))

16
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Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:

17
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Symbolic Execution

e Construct constraint system for each possible path
of the program (bounded loop unrolling)

e Regqisters and heap/stack are initially allowed to hold
any possible value

e Add (assert ...) forall pointer operations

® (check)

18
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Symbolic Execution

(define t36.0x08048358.1:: (bitvector 32) (bv—-concat
(bv—concat (heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 3)))
(heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 2))))
(bv—concat (heap.00000010 (bv—add t34.0x08048358.1 (mk-bv 32 1)))
(heap.00000010 t34.0x08048358.1))))
(define r0.0x08048358.5.1:: (bitvector 8)
(bv—-extract 7 0 t36.0x08048358.1))
(define r1.0x08048358.5.1:: (bitvector 8)
(bv—-extract 15 8 t36.0x08048358.1))
(define r2.0x08048358.5.1:: (bitvector 8)
(bv—extract 23 16 t36.0x08048358.1))
(define r3.0x08048358.5.1:: (bitvector 8)
(bv—-extract 31 24 t36.0x08048358.1))
(define t19.0x0804835b.1:: (bitvector 32) (bv-concat
(bv—-concat r3.0x08048358.5.1 r2.0x08048358.5.1)
(bv—-concat rl1.0x08048358.5.1 r0.0x08048358.5.1)))
;; checking t£t19.0x0804835b.1 (r)
(assert (= t19.0x0804835b.1 0b000O0OOO0OOOOOOOO0O0O0OOOOO0O0O000O0O0O0000))
(check)

19
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Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution
— Of course it doesn’t work. ..

20
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Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

21
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Slicing Object Code

o Program SI|C|ng (Weiser, 1981), (Ottenstein and
Ottenstein, 1984), (Horwitz et al., 1990)

e Decomposing programs based
on control and data flow

e Basically, constructing a system
dependence graph and search-
iIng for nodes the slicing criterion
depends on

22
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Slicing Object Code

push sebp t0 = GET:I32(20)
t34 = GET:I32(16) <-—
t33 = Sub32(t34,0x4:132) <-
PUT (16) = t33 <—

STle (t33) = tO0

mov sesp, sebp PUT (60) = 0x8048375:132
t35 = GET:I32(106)
PUT (20) = t35
sub $0x8, $esp PUT (60) = 0x8048377:1I32
t4d = GET:I32(106) <—
t2 = Sub32(t4,0x8:I32)
PUT (32) = 0x6:I32
PUT (36) = t4 <— criterion
PUT (40) = 0x8:I32
PUT (16) = t2

23
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Slicing Object Code

e Now, how do we deal with LD/ST instructions?

tod = LDle:I32(t62)

STle(toed) = to63
STle(t34) = tl

tl7 = LDle:I32(tl8)

STle(tl7)

I
t
|_\
N

(assert (= tl1l7 0b00000O0O0OOOOOOOOOOOOO0OOOOO0OO0O0OO000)Y)
(check)

24
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Slicing Object Code

e If all pointers evaluate to exactly one value, it's easy

e However, often they don’'t and we might end up with
"symbolic" pointers that may hold any value between
lo < pointer < up

e Solution: Heap dependency tree

25
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Slicing Object Code

e Solution: Heap dependency tree

[1, SK
[1‘3] [700]\
t12, t13 [4.90] [91,5‘00]
[4.4] [5.90] te4, t19, ...

]

t34 t64

26
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Slicing Object Code

e Bounds have to be computed for all

pointers — expensive

e We have to store the dependency tree — expensive
as well (but probably okay for device drivers)

e We get very good slices: complete and small!

27
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Slicing Object Code

e Is it any good? Initial results:

— 30 crypto drivers (10 interface functions each, 50 <
n < 3000 instructions) analysed within less than

an hour each, exhaustively
— Usually < 50 constraints per slice, solved in less

than a second; but we got up to 103 constr.
— Works fine for finding NULL-dereferences and

access to memory that is not allocated, but lots of
meaningless errors yet 28
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Slicing Object Code

e Is it any good? Less initial results:

— It doesn't scale very well.
— Experiments were executed on 20 network card

drivers and 20 file system drivers (up to 50 inter-
face functions, 3000 < n < 30000 Instructions,

lots of dependencies to the kernel)
— Looks promising but SMT solver runs out of

memory quickly

29
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Slicing Object Code

e Optimisations:
— PUT/GET removal: 60% speedup, 50% saving in
memory consumption (for big systems)

— Constant replacement: Not implemented yet
— Better initial state: Not implemented yet

30
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Slicing Object Code

e Using different coverage criteria:

— Currently we do bounded loop unrolling,
executing each loop up to 2000 times

— Requiring a coverage criterion like Condition
Coverage to be satisfied results in fewer and shorter
paths that can be analysed without exhausting
resources

31
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Slicing Object Code

e Some pointers to literature:
— "Recovery of Jump Table Case Statements from

Binary Code" (ciuentes and Emmerik, 1999)
— "Interprocedural Static Slicing of Binary
Executables” (Kiss et al., 2003)
— "Analyzing Memory Accesses in x86 Executables”
(Balakrishnan and Reps, 2004) and "Recovery of Variables and

Heap S’[FUC’[UFG |n X86 EXGCUtab|eS" (Balakrishnan and Reps,

32
2005)
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Slicing Object Code

e Some pointers to literature:

— "New Developments in WCET Analysis" (erinans et a.

2007)

33
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Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

34
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Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

e If a property is violated, generate a test case that will
make the program crash — quickly

35
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Summary

e Presented an approach to model checking compiled
programs in order to find memory safety bugs

e Does not require any abstraction, only path-sensitive
program slicing and symbolic execution

e Scalability issues as an artifact of object code; good
chance that it scales for device drivers

e Bugs found are reproducible, but not very meaningful
due to initial state being "too random"

36
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Work still to do

e Optimisations to get it work

e Experimental evaluation: use drivers with known
errors, follow evolution of a driver over a series of
releases

e Try more properties (i.e. bounds checking)
o Deal W|th Concurrency (Flanagan and Godefroid, 2005), (Lal and Reps, 2008)
e Soundness and Completeness?

e Write a thesis >
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Thank you! Questions?

38
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