BUG: unable to handle kernel NULL pointer dereference at virtual address 0000009c

printing eip:
cOledlee

*pde = 00000000
Oops: 0000 [#1]

SMP

Modules linked in:

CPU: 0

EIP: 0060: [<c0ledlee>] Not tainted VLI
EFLAGS: 00010202 (2.6.18-1-k7 #1)

EIP is at acpi_hw_low_level_read+0x7/0x6a

eax: 00000010 ebx: 00000001 ecx: 00000094 edx: cl8elf80
esi: cl8elf94 edi: 00000000 ebp: 00000000 esp: cl8elf68

ds: 007b es: 007b ss: 0068

Process swapper (pid: 1, ti=cl8e0000 task=f7b44aal0 task.ti=cl8e0000)

Stack: 00000001 cl18elf94 00000000 cOled42ae 00fb3c00 00000000 00000000 cO02b670c
£f7fb3c00 c02b6834 c01lc21b5 c02b66dc cO0lcle26 £7fb3c00 c0344b6c 00000000
c01lcl2d0 00000000 c01003el c0102b46 00000202 c01002d0 00000000 00000000

Call Trace:

[<cO0led42ae>] acpi_hw_register_ read+0x5d/0x177

]
[<c01lc21b5>] quirk_via_abnormal_poweroff+0x11/0x36
[<cO0lcle26>] pci_fixup_device+0x68/0x73
[<c01c12d0>] pci_init+0x11/0x28
[<c01003el>] init+0x111/0x28e
[<c0102b46>] ret_from_ fork+0x6/0xlc
[<c01002d0>] init+0x0/0x28e
[<c01002d0>] init+0x0/0x28e

[<c0101005>] kernel_thread_helper+0x5/0xb
Code: a0 82 2d c0 76 1b 50 68 85 8c 2a c0 68 £3 00 00 00
cO0 e8 ¢c7 80 00 00 31 d2 83 c4 10 89 dO c3 57 85 c¢9 56 53
71 08 8b 59 04 89 £7 09 df 74 51 c7 02 00 00 00 00 8a 09
EIP: [<cOledlee>] acpi_hw_low_level_ read+0x7/0x6a SS:ESP
<0>Kernel panic - not syncing: Attempted to kill init!

ff 35 ac ef 28
74 5d <8b>

84
0068:cl8elfo68

Is Your Program Memory Safe?
Jan Tobias Miihlberg THE UNIVERSITYW

Is Your Program Memory Safe?

Can we use bounded model checking to find memory safety

violations in compiled programs?

Jan Tobias Muhlberg

muehlber@cs.york.ac.uk

Supervisor: Dr. Gerald Luttgen
Assessor: Prof. Jim Woodcock

Thesis Seminar, York, 10th July 2008

muehlber@cs.york.ac.uk

Is Your Program Memory Safe?:
Motivation

Motivation
o 'BLAS T/ng Linux Code" (Miihlberg and Liittgen, 2006)

e "Model-checking Part of a Linux File System"

(Galloway et al., 2007)

e Results:
— Memory safety issues are outside of the scope of

currently available software model checkers
— Biggest problem is to abstract a faithful model from

a given program

Is Your Program Memory Safe?:
Related Work

Related Work

e O’Hearn and colleagues: Spacelnvader, Smallfoot

(Yang et al., 2007)

e Microsoft Research: SLAM, VCC, Hypervisor

(Ball et al., 2006)

o "EXE: automatically generating inputs of death”

(Cadar et al., 2006)

e "Analyzing stripped device-driver executables”

(Balakrishnan and Reps, 2008)

Is Your Program Memory Safe?:
Memory Safety?

Memory Safety?

e What | am interested in:

— Dereferencing invalid pointers

— Uninitialised reads

— Buffer overflows

— Memory leaks

— Violation of API usage rules for (de)allocation

e Not now: Shape safety

Is Your Program Memory Safe?:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

Is Your Program Memory Safe?:
Why Object Code?

Why ObJeCt COde? (Balakrishnan et al., 2005)

e Programs are not always available in source code

(proprietary stuff, libraries)

e Do properties hold after compilation and
optimisation?

e Many bugs exist because of platform specific details
e Programs may be modified after compilation

e Unspecified language constructs, use of inline
assembly or multiple languages 7

Is Your Program Memory Safe?:
Project Outline

Project Outline
e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

Is Your Program Memory Safe?:
Why Linux Device Drivers?

Why Linux Device Drivers?
e Highly critical domain
e Modular software architecture
e Small programs with high complexity

e Almost no tool support for debugging
and verification

e Plenty of case studies available to
compare results with

Is Your Program Memory Safe?:
Project Outline

Project Outline
e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

10

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

e |IA32 assembly:
— =~ 500 instructions, 3 byte opcodes

— lots of instructions with multiple effects
(l.e. POP, PUSH, CALL)

— But still; clear semantics

11

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

e Valgrind’s IR (etnercote and Fitzhardinge, 200
— RISC-like assembly language with arbitrary
number of temporary registers
— 12 expressions, ~ 130 operations
— No side-effects
— Explicit load/store operations

— Static single assignment form

12

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

push sebp t0 = GET:I32(20)
t34 = GET:I32(16)
t33 = Sub32(t34,0x4:132)
PUT (16) = t33
STle(t33) = tO

mov sesp, sebp PUT (60) = 0x8048375:I32
t35 = GET:I32(16)
PUT (20) = t35

sub $0x8, $esp PUT (60) = 0x8048377:1I32

td = GET:I1I32(106)

t2 = Sub32(t4,0x8:I32)
PUT (32) = 0x6:I32

PUT (36) = t4

PUT (40) = 0x8:I32

PUT (1l6) = t2

13

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

e Defining a semantics:

Types = {18,116,132}
Addresses = bvecso
Values = bvecg U bvecig U bveczo
Registers = Integer — bvecg
TempRegisters = Integer — (type € Types,val € Values U {L})
Heap = Addresses — bvecsg
HeapLocations = Addresses — (alloc : Bool,init : Bool

start € Addresses, size € bveczo)

e command-state pair: (c, (t,r, h,l))
14

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

e Defining a semantics:
t(treg).val = L
(PUT(reg) = treg, (t,r, h,l))
(¢, [r|reg : t(treg).vall, h,1) if t(treg).type = I8
~ 9 (t, [r|{reg..reg + 1) : t(treg).val], h,l) if t(treg).type =116
(L, [r|(reg..reg + 3) : t(treg).val], h,l) if t(treg).type = 132

t(treg).type = type A t(treg).val = L

(treg = GET : type(reg), (¢t,r, h,l))
(([t|treg.val : r(reg)],r, h,1) if type = I8
~ ¢ ([t|treg.val : r({reg..reg + 1))],r, h,1) if type =116
| ([t|treg.val : r((reg..reg + 3))],7, h,l) if type =132

15

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation

e And translate the program into a set of
b|t'VeCt0r COﬂStraIntS fOF Y|CeS (Dutertre and de Moura, 2006):

(define t34.0x8048374.1:: (bitvector 32) (bv—-concat
(bv—concat rl19.0x00000001.0.0 r18.0x00000001.0.0)

(bv—concat rl7.0x00000001.0.0 rl1l6.0x00000001.0.0)))
(define t33.0x08048374.1:: (bitvector 32)

(bv-sub t34.0x08048374.1 (mk-bv 32 4)))

16

Is Your Program Memory Safe?:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:

17

Is Your Program Memory Safe?:
Symbolic Execution

Symbolic Execution

e Construct constraint system for each possible path
of the program (bounded loop unrolling)

e Regqisters and heap/stack are initially allowed to hold
any possible value

e Add (assert ...) forall pointer operations

® (check)

18

Is Your Program Memory Safe?:
Symbolic Execution

Symbolic Execution

(define t36.0x08048358.1:: (bitvector 32) (bv—-concat
(bv—concat (heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 3)))
(heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 2))))
(bv—concat (heap.00000010 (bv—add t34.0x08048358.1 (mk-bv 32 1)))
(heap.00000010 t34.0x08048358.1))))
(define r0.0x08048358.5.1:: (bitvector 8)
(bv—-extract 7 0 t36.0x08048358.1))
(define r1.0x08048358.5.1:: (bitvector 8)
(bv—-extract 15 8 t36.0x08048358.1))
(define r2.0x08048358.5.1:: (bitvector 8)
(bv—extract 23 16 t36.0x08048358.1))
(define r3.0x08048358.5.1:: (bitvector 8)
(bv—-extract 31 24 t36.0x08048358.1))
(define t19.0x0804835b.1:: (bitvector 32) (bv-concat
(bv—-concat r3.0x08048358.5.1 r2.0x08048358.5.1)
(bv—-concat rl1.0x08048358.5.1 r0.0x08048358.5.1)))
;; checking t£t19.0x0804835b.1 (r)
(assert (= t19.0x0804835b.1 0b000O0OOO0OOOOOOOO0O0O0OOOOO0O0O000O0O0O0000))
(check)

19

Is Your Program Memory Safe?:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?

e Find application domain: Linux device drivers

e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution
— Of course it doesn’t work. ..

20

Is Your Program Memory Safe?:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

21

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

o Program SI|C|ng (Weiser, 1981), (Ottenstein and
Ottenstein, 1984), (Horwitz et al., 1990)

e Decomposing programs based
on control and data flow

e Basically, constructing a system
dependence graph and search-
iIng for nodes the slicing criterion
depends on

22

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

push sebp t0 = GET:I32(20)
t34 = GET:I32(16) <-—
t33 = Sub32(t34,0x4:132) <-
PUT (16) = t33 <—

STle (t33) = tO0

mov sesp, sebp PUT (60) = 0x8048375:132
t35 = GET:I32(106)
PUT (20) = t35
sub $0x8, $esp PUT (60) = 0x8048377:1I32
t4d = GET:I32(106) <—
t2 = Sub32(t4,0x8:I32)
PUT (32) = 0x6:I32
PUT (36) = t4 <— criterion
PUT (40) = 0x8:I32
PUT (16) = t2

23

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Now, how do we deal with LD/ST instructions?

tod = LDle:I32(t62)

STle(toed) = to63
STle(t34) = tl

tl7 = LDle:I32(tl8)

STle(tl7)

I
t
|_\
N

(assert (= tl1l7 0b00000O0O0OOOOOOOOOOOOO0OOOOO0OO0O0OO000)Y)
(check)

24

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e If all pointers evaluate to exactly one value, it's easy

e However, often they don’'t and we might end up with
"symbolic" pointers that may hold any value between
lo < pointer < up

e Solution: Heap dependency tree

25

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Solution: Heap dependency tree

[1, SK
[1‘3] [700]\
t12, t13 [4.90] [91,5‘00]
[4.4] [5.90] te4, t19, ...

]

t34 t64

26

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Bounds have to be computed for all

pointers — expensive

e We have to store the dependency tree — expensive
as well (but probably okay for device drivers)

e We get very good slices: complete and small!

27

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Is it any good? Initial results:

— 30 crypto drivers (10 interface functions each, 50 <
n < 3000 instructions) analysed within less than

an hour each, exhaustively
— Usually < 50 constraints per slice, solved in less

than a second; but we got up to 103 constr.
— Works fine for finding NULL-dereferences and

access to memory that is not allocated, but lots of
meaningless errors yet 28

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Is it any good? Less initial results:

— It doesn't scale very well.
— Experiments were executed on 20 network card

drivers and 20 file system drivers (up to 50 inter-
face functions, 3000 < n < 30000 Instructions,

lots of dependencies to the kernel)
— Looks promising but SMT solver runs out of

memory quickly

29

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Optimisations:
— PUT/GET removal: 60% speedup, 50% saving in
memory consumption (for big systems)

— Constant replacement: Not implemented yet
— Better initial state: Not implemented yet

30

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Using different coverage criteria:

— Currently we do bounded loop unrolling,
executing each loop up to 2000 times

— Requiring a coverage criterion like Condition
Coverage to be satisfied results in fewer and shorter
paths that can be analysed without exhausting
resources

31

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Some pointers to literature:
— "Recovery of Jump Table Case Statements from

Binary Code" (ciuentes and Emmerik, 1999)
— "Interprocedural Static Slicing of Binary
Executables” (Kiss et al., 2003)
— "Analyzing Memory Accesses in x86 Executables”
(Balakrishnan and Reps, 2004) and "Recovery of Variables and

Heap S’[FUC’[UFG |n X86 EXGCUtab|eS" (Balakrishnan and Reps,

32
2005)

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code

e Some pointers to literature:

— "New Developments in WCET Analysis" (erinans et a.

2007)

33

Is Your Program Memory Safe?:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

34

Is Your Program Memory Safe?:
Project Outline

Project Outline

e Why don’t we verify on the compiled code?
e Find application domain: Linux device drivers
e Chose an intermediate representation: Valgrind

e For each program location, check safety properties:
bounded model checking, symbolic execution, slicing

e If a property is violated, generate a test case that will
make the program crash — quickly

35

Is Your Program Memory Safe?:
Summary

Summary

e Presented an approach to model checking compiled
programs in order to find memory safety bugs

e Does not require any abstraction, only path-sensitive
program slicing and symbolic execution

e Scalability issues as an artifact of object code; good
chance that it scales for device drivers

e Bugs found are reproducible, but not very meaningful
due to initial state being "too random"

36

Is Your Program Memory Safe?:
Work still to do

Work still to do

e Optimisations to get it work

e Experimental evaluation: use drivers with known
errors, follow evolution of a driver over a series of
releases

e Try more properties (i.e. bounds checking)
o Deal W|th Concurrency (Flanagan and Godefroid, 2005), (Lal and Reps, 2008)
e Soundness and Completeness?

e Write a thesis >

Is Your Program Memory Safe?:
Thank you!

Thank you! Questions?

38

Is Your Program Memory Safe?:
References

References

Balakrishnan, G. and Reps, T.: 2004, Analyzing memory accesses in x86 executables, in Proc.
Int. Conf. on Compiler Construction, Vol. 2985 of LNCS, pp 5 — 23

Balakrishnan, G. and Reps, T.: 2005, Recovery of Variables and Heap Structure in x86 Executa-
bles, Technical report, University of Wisconsin, Madison

Balakrishnan, G. and Reps, T.: 2008, Analyzing stripped device-driver executables, in Proc.
TACAS, Springer-Verlag

Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T.: 2005, WYSINWYX: What You See Is
Not What You eXecute, in VSTTE

Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B., Raja-
mani, S. K., and Ustuner, A.: 2006, Thorough static analysis of device drivers, in EuroSys

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R.: 2006, Exe: automati-
cally generating inputs of death, in CCS '06: Proceedings of the 13th ACM conference on
Computer and communications security, pp 322—-335, ACM, New York, NY, USA

Cifuentes, C. and Emmerik, M. V.: 1999, Recovery of jump table case statements from binary
code, in IWPC '99: Proceedings of the 7th International Workshop on Program Comprehen-
sion, p. 192, IEEE Computer Society, Washington, DC, USA

Dutertre, B. and de Moura, L.: 2006, A fast linear-arithmetic solver for DPLL(T), in CAV 2006,
No. 4144 in LNCS, pp 81 — 94

Ferdinand, C., Martin, F., Cullmann, C., Schlickling, M., Stein, I., Thesing, S., and Heckmann, R.:
2007, New developments in wcet analysis, in Program Analysis and Compilation, Theory
and Practice, No. 4444 in LNCS, pp 12 — 52, Springer Verlag

39

Flanagan, C. and Godefroid, P.: 2005, Dynamic partial-order reduction for model checking
software, in POPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, Long Beach, California, USA, pp 110-121, ACM
Press, New York, NY, USA

Galloway, A., Mihlberg, J. T., Siminiceanu, R., and Luttgen, G.: 2007, Model-checking Part of
a Linux File System, Technical Report YCS-2007-423, Department of Computer Science,
University of York, UK

Horwitz, S., Reps, T., and Binkley, D.: 1990, ACM Trans. Program. Lang. Syst. 12(1), 26

Kiss, A., Jasz, J., Lehotai, G., and Gyimothy, T.: 2003, scam 00, 118

Lal, A. and Reps, T.: 2008, Reducing concurrent analysis under a context bound to sequential
analys, in Proc. Computer-Aided Verification

Mihlberg, J. T. and Lattgen, G.: 2006, Blasting linux code, in FMICS 2006, No. 4346 in LNCS,
pp 211 — 226

Nethercote, N. and Fitzhardinge, J.: 2004, Bounds-checking entire programs without recompil-
ing, in Informal Proceedings of the Second Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE 2004)

Ottenstein, K. J. and Ottenstein, L. M.: 1984, The program dependence graph in a software
development environment, in SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software development environments, pp 177—
184, ACM, New York, NY, USA

Weiser, M.: 1981, Program slicing, in ICSE '81: Proceedings of the 5th international conference
on Software engineering, pp 439 — 449, IEEE Press, Piscataway, NJ, USA

Yang, H., Lee, O., Calcagno, C., Distefano, D., and O’'Hearn, P.: 2007, On Scalable Shape
Analysis, Technical Report RR-07-10, Queen Mary, University of London

