
BUG: unable to handle kernel NULL pointer dereference at virtual address 0000009c
printing eip:
c01e41ee

*pde = 00000000
Oops: 0000 [#1]
SMP
Modules linked in:
CPU: 0
EIP: 0060:[<c01e41ee>] Not tainted VLI
EFLAGS: 00010202 (2.6.18-1-k7 #1)
EIP is at acpi_hw_low_level_read+0x7/0x6a
eax: 00000010 ebx: 00000001 ecx: 00000094 edx: c18e1f80
esi: c18e1f94 edi: 00000000 ebp: 00000000 esp: c18e1f68
ds: 007b es: 007b ss: 0068
Process swapper (pid: 1, ti=c18e0000 task=f7b44aa0 task.ti=c18e0000)
Stack: 00000001 c18e1f94 00000000 c01e42ae 00fb3c00 00000000 00000000 c02b670c

f7fb3c00 c02b6834 c01c21b5 c02b66dc c01c1e26 f7fb3c00 c0344b6c 00000000
c01c12d0 00000000 c01003e1 c0102b46 00000202 c01002d0 00000000 00000000

Call Trace:
[<c01e42ae>] acpi_hw_register_read+0x5d/0x177
[<c01c21b5>] quirk_via_abnormal_poweroff+0x11/0x36
[<c01c1e26>] pci_fixup_device+0x68/0x73
[<c01c12d0>] pci_init+0x11/0x28
[<c01003e1>] init+0x111/0x28e
[<c0102b46>] ret_from_fork+0x6/0x1c
[<c01002d0>] init+0x0/0x28e
[<c01002d0>] init+0x0/0x28e
[<c0101005>] kernel_thread_helper+0x5/0xb
Code: a0 82 2d c0 76 1b 50 68 85 8c 2a c0 68 f3 00 00 00 ff 35 ac ef 28
c0 e8 c7 80 00 00 31 d2 83 c4 10 89 d0 c3 57 85 c9 56 53 74 5d <8b>
71 08 8b 59 04 89 f7 09 df 74 51 c7 02 00 00 00 00 8a 09 84
EIP: [<c01e41ee>] acpi_hw_low_level_read+0x7/0x6a SS:ESP 0068:c18e1f68
<0>Kernel panic - not syncing: Attempted to kill init!

1

Is Your Program Memory Safe?
Jan Tobias Mühlberg

Is Your Program Memory Safe?
Can we use bounded model checking to find memory safety

violations in compiled programs?

Jan Tobias Mühlberg
muehlber@cs.york.ac.uk

Supervisor: Dr. Gerald Lüttgen
Assessor: Prof. Jim Woodcock

Thesis Seminar, York, 10th July 2008

2

muehlber@cs.york.ac.uk

Is Your Program Memory Safe?:
Motivation

Motivation
• "BLASTing Linux Code" (Mühlberg and Lüttgen, 2006)

• "Model-checking Part of a Linux File System"

(Galloway et al., 2007)

• Results:

– Memory safety issues are outside of the scope of

currently available software model checkers
– Biggest problem is to abstract a faithful model from

a given program
3

Is Your Program Memory Safe?:
Related Work

Related Work
• O’Hearn and colleagues: SpaceInvader, Smallfoot

(Yang et al., 2007)

• Microsoft Research: SLAM, VCC, Hypervisor

(Ball et al., 2006)

• "EXE: automatically generating inputs of death"

(Cadar et al., 2006)

• "Analyzing stripped device-driver executables"

(Balakrishnan and Reps, 2008) 4

Is Your Program Memory Safe?:
Memory Safety?

Memory Safety?
• What I am interested in:

– Dereferencing invalid pointers
– Uninitialised reads
– Buffer overflows
– Memory leaks
– Violation of API usage rules for (de)allocation

• Not now: Shape safety

5

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

6

Is Your Program Memory Safe?:
Why Object Code?

Why Object Code? (Balakrishnan et al., 2005)

• Programs are not always available in source code

(proprietary stuff, libraries)

• Do properties hold after compilation and

optimisation?

• Many bugs exist because of platform specific details

• Programs may be modified after compilation

• Unspecified language constructs, use of inline

assembly or multiple languages 7

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

8

Is Your Program Memory Safe?:
Why Linux Device Drivers?

Why Linux Device Drivers?
• Highly critical domain

• Modular software architecture

• Small programs with high complexity

• Almost no tool support for debugging

and verification

• Plenty of case studies available to

compare results with

9

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

• Chose an intermediate representation: Valgrind

10

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation
• IA32 assembly:

– ≈ 500 instructions, 3 byte opcodes

– lots of instructions with multiple effects

(i.e. POP, PUSH, CALL)

– But still: clear semantics

11

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation
• Valgrind’s IR (Nethercote and Fitzhardinge, 2004)

– RISC-like assembly language with arbitrary

number of temporary registers

– 12 expressions, ≈ 130 operations

– No side-effects

– Explicit load/store operations

– Static single assignment form

12

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation
push %ebp t0 = GET:I32(20)

t34 = GET:I32(16)
t33 = Sub32(t34,0x4:I32)
PUT(16) = t33
STle(t33) = t0

mov %esp,%ebp PUT(60) = 0x8048375:I32
t35 = GET:I32(16)
PUT(20) = t35

sub $0x8,%esp PUT(60) = 0x8048377:I32
t4 = GET:I32(16)
t2 = Sub32(t4,0x8:I32)
PUT(32) = 0x6:I32
PUT(36) = t4
PUT(40) = 0x8:I32
PUT(16) = t2

13

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation
• Defining a semantics:

Types = {I8, I16, I32}
Addresses = bvec32

V alues = bvec8 ∪ bvec16 ∪ bvec32

Registers = Integer → bvec8

TempRegisters = Integer → (type ∈ Types, val ∈ V alues ∪ {⊥})
Heap = Addresses→ bvec8

HeapLocations = Addresses→ (alloc : Bool, init : Bool

start ∈ Addresses, size ∈ bvec32)

• command-state pair: 〈c, (t, r, h, l)〉
14

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation
• Defining a semantics:

t(treg).val 6= ⊥
〈PUT(reg) = treg, (t, r, h, l)〉


(t, [r|reg : t(treg).val], h, l) if t(treg).type = I8

(t, [r|〈reg..reg + 1〉 : t(treg).val], h, l) if t(treg).type = I16

(t, [r|〈reg..reg + 3〉 : t(treg).val], h, l) if t(treg).type = I32

t(treg).type = type ∧ t(treg).val = ⊥
〈treg = GET : type(reg), (t, r, h, l)〉


([t|treg.val : r(reg)], r, h, l) if type = I8

([t|treg.val : r(〈reg..reg + 1〉)], r, h, l) if type = I16

([t|treg.val : r(〈reg..reg + 3〉)], r, h, l) if type = I32

15

Is Your Program Memory Safe?:
Intermediate Representation

Intermediate Representation
• And translate the program into a set of

bit-vector constraints for Yices (Dutertre and de Moura, 2006):

...

(define t34.0x8048374.1::(bitvector 32) (bv-concat

(bv-concat r19.0x00000001.0.0 r18.0x00000001.0.0)

(bv-concat r17.0x00000001.0.0 r16.0x00000001.0.0)))

(define t33.0x08048374.1::(bitvector 32)

(bv-sub t34.0x08048374.1 (mk-bv 32 4)))

...

16

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

• Chose an intermediate representation: Valgrind

• For each program location, check safety properties:

17

Is Your Program Memory Safe?:
Symbolic Execution

Symbolic Execution
• Construct constraint system for each possible path

of the program (bounded loop unrolling)

• Registers and heap/stack are initially allowed to hold

any possible value

• Add (assert ...) for all pointer operations

• (check)

18

Is Your Program Memory Safe?:
Symbolic Execution

Symbolic Execution
...
(define t36.0x08048358.1::(bitvector 32) (bv-concat

(bv-concat (heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 3)))
(heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 2))))

(bv-concat (heap.00000010 (bv-add t34.0x08048358.1 (mk-bv 32 1)))
(heap.00000010 t34.0x08048358.1))))

(define r0.0x08048358.5.1::(bitvector 8)
(bv-extract 7 0 t36.0x08048358.1))

(define r1.0x08048358.5.1::(bitvector 8)
(bv-extract 15 8 t36.0x08048358.1))

(define r2.0x08048358.5.1::(bitvector 8)
(bv-extract 23 16 t36.0x08048358.1))

(define r3.0x08048358.5.1::(bitvector 8)
(bv-extract 31 24 t36.0x08048358.1))

(define t19.0x0804835b.1::(bitvector 32) (bv-concat
(bv-concat r3.0x08048358.5.1 r2.0x08048358.5.1)
(bv-concat r1.0x08048358.5.1 r0.0x08048358.5.1)))

;; checking t19.0x0804835b.1 (r)
(assert (= t19.0x0804835b.1 0b00000000000000000000000000000000))
(check)

19

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

• Chose an intermediate representation: Valgrind

• For each program location, check safety properties:

bounded model checking, symbolic execution

– Of course it doesn’t work. . .

20

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

• Chose an intermediate representation: Valgrind

• For each program location, check safety properties:

bounded model checking, symbolic execution, slicing

21

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Program Slicing: (Weiser, 1981), (Ottenstein and

Ottenstein, 1984), (Horwitz et al., 1990)

• Decomposing programs based

on control and data flow

• Basically, constructing a system

dependence graph and search-

ing for nodes the slicing criterion

depends on
22

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
push %ebp t0 = GET:I32(20)

t34 = GET:I32(16) <-
t33 = Sub32(t34,0x4:I32) <-
PUT(16) = t33 <-
STle(t33) = t0

mov %esp,%ebp PUT(60) = 0x8048375:I32
t35 = GET:I32(16)
PUT(20) = t35

sub $0x8,%esp PUT(60) = 0x8048377:I32
t4 = GET:I32(16) <-
t2 = Sub32(t4,0x8:I32)
PUT(32) = 0x6:I32
PUT(36) = t4 <- criterion
PUT(40) = 0x8:I32
PUT(16) = t2

23

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Now, how do we deal with LD/ST instructions?

...

t64 = LDle:I32(t62)

...

STle(t64) = t63

STle(t34) = t1

...

t17 = LDle:I32(t18)

...

STle(t17) = t12

(assert (= t17 0b00000000000000000000000000000000))

(check)
24

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• If all pointers evaluate to exactly one value, it’s easy

• However, often they don’t and we might end up with

"symbolic" pointers that may hold any value between

lo ≤ pointer ≤ up

• Solution: Heap dependency tree

25

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Solution: Heap dependency tree

26

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Bounds have to be computed for all

pointers – expensive

• We have to store the dependency tree – expensive

as well (but probably okay for device drivers)

• We get very good slices: complete and small!

27

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Is it any good? Initial results:

– 30 crypto drivers (10 interface functions each, 50 ≤
n ≤ 3000 instructions) analysed within less than

an hour each, exhaustively
– Usually ≤ 50 constraints per slice, solved in less

than a second; but we got up to 103 constr.
– Works fine for finding NULL-dereferences and

access to memory that is not allocated, but lots of

meaningless errors yet 28

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Is it any good? Less initial results:

– It doesn’t scale very well.
– Experiments were executed on 20 network card

drivers and 20 file system drivers (up to 50 inter-

face functions, 3000 ≤ n ≤ 30000 instructions,

lots of dependencies to the kernel)
– Looks promising but SMT solver runs out of

memory quickly

29

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Optimisations:

– PUT/GET removal: 60% speedup, 50% saving in

memory consumption (for big systems)

– Constant replacement: Not implemented yet
– Better initial state: Not implemented yet

30

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Using different coverage criteria:

– Currently we do bounded loop unrolling,

executing each loop up to 2000 times

– Requiring a coverage criterion like Condition

Coverage to be satisfied results in fewer and shorter

paths that can be analysed without exhausting

resources

31

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Some pointers to literature:

– "Recovery of Jump Table Case Statements from

Binary Code" (Cifuentes and Emmerik, 1999)

– "Interprocedural Static Slicing of Binary

Executables" (Kiss et al., 2003)

– "Analyzing Memory Accesses in x86 Executables"

(Balakrishnan and Reps, 2004) and "Recovery of Variables and

Heap Structure in x86 Executables" (Balakrishnan and Reps,

2005)
32

Is Your Program Memory Safe?:
Slicing Object Code

Slicing Object Code
• Some pointers to literature:

– "New Developments in WCET Analysis" (Ferdinand et al.,

2007)

33

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

• Chose an intermediate representation: Valgrind

• For each program location, check safety properties:

bounded model checking, symbolic execution, slicing

34

Is Your Program Memory Safe?:
Project Outline

Project Outline
• Why don’t we verify on the compiled code?

• Find application domain: Linux device drivers

• Chose an intermediate representation: Valgrind

• For each program location, check safety properties:

bounded model checking, symbolic execution, slicing

• If a property is violated, generate a test case that will

make the program crash – quickly

35

Is Your Program Memory Safe?:
Summary

Summary
• Presented an approach to model checking compiled

programs in order to find memory safety bugs

• Does not require any abstraction, only path-sensitive

program slicing and symbolic execution

• Scalability issues as an artifact of object code; good

chance that it scales for device drivers

• Bugs found are reproducible, but not very meaningful

due to initial state being "too random" 36

Is Your Program Memory Safe?:
Work still to do

Work still to do
• Optimisations to get it work

• Experimental evaluation: use drivers with known

errors, follow evolution of a driver over a series of

releases

• Try more properties (i.e. bounds checking)

• Deal with concurrency: (Flanagan and Godefroid, 2005), (Lal and Reps, 2008)

• Soundness and Completeness?

• Write a thesis 37

Is Your Program Memory Safe?:
Thank you!

Thank you! Questions?

38

Is Your Program Memory Safe?:
References

References
Balakrishnan, G. and Reps, T.: 2004, Analyzing memory accesses in x86 executables, in Proc.

Int. Conf. on Compiler Construction, Vol. 2985 of LNCS, pp 5 – 23
Balakrishnan, G. and Reps, T.: 2005, Recovery of Variables and Heap Structure in x86 Executa-

bles, Technical report, University of Wisconsin, Madison
Balakrishnan, G. and Reps, T.: 2008, Analyzing stripped device-driver executables, in Proc.

TACAS, Springer-Verlag
Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T.: 2005, WYSINWYX: What You See Is

Not What You eXecute, in VSTTE
Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B., Raja-

mani, S. K., and Ustuner, A.: 2006, Thorough static analysis of device drivers, in EuroSys
Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R.: 2006, Exe: automati-

cally generating inputs of death, in CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pp 322–335, ACM, New York, NY, USA

Cifuentes, C. and Emmerik, M. V.: 1999, Recovery of jump table case statements from binary
code, in IWPC ’99: Proceedings of the 7th International Workshop on Program Comprehen-
sion, p. 192, IEEE Computer Society, Washington, DC, USA

Dutertre, B. and de Moura, L.: 2006, A fast linear-arithmetic solver for DPLL(T), in CAV 2006,
No. 4144 in LNCS, pp 81 – 94

Ferdinand, C., Martin, F., Cullmann, C., Schlickling, M., Stein, I., Thesing, S., and Heckmann, R.:
2007, New developments in wcet analysis, in Program Analysis and Compilation, Theory
and Practice, No. 4444 in LNCS, pp 12 – 52, Springer Verlag

39

Flanagan, C. and Godefroid, P.: 2005, Dynamic partial-order reduction for model checking
software, in POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, Long Beach, California, USA, pp 110–121, ACM
Press, New York, NY, USA

Galloway, A., Mühlberg, J. T., Siminiceanu, R., and Lüttgen, G.: 2007, Model-checking Part of
a Linux File System, Technical Report YCS-2007-423, Department of Computer Science,
University of York, UK

Horwitz, S., Reps, T., and Binkley, D.: 1990, ACM Trans. Program. Lang. Syst. 12(1), 26
Kiss, A., Jasz, J., Lehotai, G., and Gyimothy, T.: 2003, scam 00, 118
Lal, A. and Reps, T.: 2008, Reducing concurrent analysis under a context bound to sequential

analys, in Proc. Computer-Aided Verification
Mühlberg, J. T. and Lüttgen, G.: 2006, Blasting linux code, in FMICS 2006, No. 4346 in LNCS,

pp 211 – 226
Nethercote, N. and Fitzhardinge, J.: 2004, Bounds-checking entire programs without recompil-

ing, in Informal Proceedings of the Second Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE 2004)

Ottenstein, K. J. and Ottenstein, L. M.: 1984, The program dependence graph in a software
development environment, in SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software development environments, pp 177–
184, ACM, New York, NY, USA

Weiser, M.: 1981, Program slicing, in ICSE ’81: Proceedings of the 5th international conference
on Software engineering, pp 439 – 449, IEEE Press, Piscataway, NJ, USA

Yang, H., Lee, O., Calcagno, C., Distefano, D., and O’Hearn, P.: 2007, On Scalable Shape
Analysis, Technical Report RR-07-10, Queen Mary, University of London

